
1

SUPPLEMENTARY MATERIAL

Violating the normality assumption may be the lesser of two evils

Ulrich Knief1,* & Wolfgang Forstmeier2

1 Division of Evolutionary Biology, Faculty of Biology, Ludwig Maximilian University of Munich,
82152 Planegg-Martinsried, Germany

2 Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for
Ornithology, 82319 Seewiesen, Germany

* Address for correspondence: Ulrich Knief, Division of Evolutionary Biology, Faculty of Biology,
Ludwig Maximilian University of Munich, Grosshaderner Str. 2, 82152 Planegg-Martinsried,
Germany, Phone: 0049-89-2180-74101, Fax: 0049-89-2180-74104, E-mail: knief@biologie.uni-
muenchen.de

Index
Supplementary Methods 2
Supplementary Figures 9
Supplementary Tables 16
References 23

2

Supplementary Methods 1

 2

Description of the TrustGauss functions 3

The main function of the “TrustGauss” package is TrustGauss() and it can take 29 arguments that are 4

described in the documentation to the function and that can be accessed via 5

 6

> ?TrustGauss 7

 8

TrustGauss() can be used to assess type I error rates of linear regression models that are fitted through 9

a call to the base R function glm(). We here briefly summarize each of the 29 arguments. Default 10

settings for each argument are given in the documentation to the function. 11

 12

1. Family. This argument takes a character input and specifies the error distribution and link 13

function to be used in the generalized linear model. It can take one of the following values: 14

“gaussian”, “poisson”, “binomial”, “quasipoisson”, “quasibinomial” or “Gamma”. Since the 15

argument is passed directly to the glm() function, the link function can be specified in the standard 16

way, for example as “gaussian(link = ‘identity’)”. See also the glm() function for further details. 17

2. nSamples. This argument takes a numeric integer input, specifying the number of samples/data 18

points to simulate. 19

3. nSimulations. This argument takes a numeric integer input, specifying for how many iterations 20

the simulation will run. 21

4. SaveAllOutput. This argument is Boolean. If it is set to TRUE, all individual data points of the 22

dependent and independent variables are returned in a list. They can be found in “Data” with 23

column names “Dependent”, “Cov1”, “Cov2”, ..., “Fac1”, “Fac2”, ... (depending on what 24

combination of covariates and factors is specified, see below). 25

5. CompareTtest. This argument is Boolean. If it is set to TRUE, P-values are calculated through 26

both the glm() and the t.test() function. This is only valid when a single factor with two levels is 27

fitted as the independent variable with distribution set to “UniformCategorical” (see below). 28

6. PlotExample. This parameter is Boolean. If it is set to TRUE, one example histogram of the 29

distribution of the dependent variable Y is plotted. 30

7. DistributionY. This argument takes a character input and specifies the distribution of the 31

dependent variable Y. It can take one of the following values: “Gaussian”, “GaussianCategorical”, 32

“GaussianZero”, “AbsoluteGaussian”, “Gamma”, “GammaCategorical”, 33

“GaussianZeroCategorical”, “Binomial”, “NegativeBinomial”, “StudentsT”, “Poisson” or 34

“Uniform”. In principle, the base R functions for generating randomly distributed Gaussian 35

[rnorm()], Gamma [rgamma()], binomial [rbinom()], negative binomial [rnbinom()], Student’s t 36

[rt()], Poisson [rpois()] or uniform [runif()] variables are used. Parameters for all distributions can 37

be specified (see below). “GaussianCategorical” generates normally distributed integers. 38

“GaussianZero” generates a zero-inflated normal distribution. “AbsoluteGaussian” simulates 39

absolute values of a Gaussian distribution. “GaussianZeroCategorical” first generates a zero-40

inflated normal distribution and then produces categories. “GammaCategorical” generates gamma 41

distributed integers. 42

8. DistributionXCov. This argument takes a character input and specifies the distribution of the 43

independent covariate X. It can take the same values as DistributionY. It is also possible to specify 44

multiple different distributions in order to fit more than one covariate (as a vector). Additionally, it 45

can be set to NULL if only factors should be fitted. 46

3

9. DistributionXFac. This argument takes a character input and specifies the distribution of the 47

independent factor X. Only the categorical distributions are valid inputs (“GaussianCategorical”, 48

“GammaCategorical”, “GaussianZeroCategorical”, “Binomial” or “UniformCategorical”). It is 49

also possible to specify multiple different distributions in order to fit more than one factor (as a 50

vector). Additionally, it can be set to NULL if only covariates should be fitted. 51

 52

The following arguments specify parameters for the distributions of the independent and dependent 53

variables. 54

 55

10. MeanY.gauss. This argument takes a numeric input, specifying the mean of the distribution of 56

Y, if DistributionY is set to “Gaussian”, “GaussianCategorical”, “GaussianZero”, 57

“GaussianZeroCategorical” or “AbsoluteGaussian”. See also the rnorm() function for further 58

details. The operations of categorization, taking the absolute value or adding zero-inflation are 59

performed after the call to the rnorm() function. 60

11. SDY.gauss. This argument takes a numeric input, specifying the standard deviation of the 61

distribution of Y, if DistributionY is set to “Gaussian”, “GaussianCategorical”, “GaussianZero”, 62

“GaussianZeroCategorical” or “AbsoluteGaussian”. See also the rnorm() function for further 63

details. The operations of categorization, taking the absolute value or adding zero-inflation are 64

performed after the call to the rnorm() function. 65

12. nCategoriesY.cat. This argument takes a numeric integer input, specifying how many 66

categories are simulated, if DistributionY is set to “GaussianCategorical” or “GammaCategorical”. 67

13. zeroLevelY.zero. This argument takes a numeric input, specifying the proportion of data that 68

will be set to 0, if DistributionY is set to “GaussianZero” or “GaussianZeroCategorical”. 69

14. ShapeY.gamma. This argument takes a numeric input, specifying the shape parameter k, if 70

DistributionY is set to “Gamma”, “GammaCategorical” or “NegativeBinomial”. See also the 71

rgamma() and rnbinom() functions for further details. Categorization is performed after the call to 72

the rgamma() function. 73

15. ScaleY.gamma. This argument takes a numeric input, specifying the scale parameter capital 74

theta, if DistributionY is set to “Gamma”, “GammaCategorical” or “NegativeBinomial”. See also 75

the rgamma() and rnbinom() functions for further details. Categorization is performed after the call 76

to the rgamma() function. 77

16. DFY.student. This argument takes a numeric input, specifying the degrees of freedom, if 78

DistributionY is set to “StudentsT”. See also the rt() function for further details. 79

17. MinY.uni. This argument takes a numeric input, specifying the minimum of the distribution, if 80

DistributionY is set to “Uniform”. See also the runif() function for further details. 81

18. MaxY.uni. This argument takes a numeric input, specifying the maximum of the distribution, if 82

DistributionY is set to “Uniform”. See also the runif() function for further details. 83

19. LambdaY.pois. This argument takes a numeric input, specifying the mean of the distribution, if 84

DistributionY is set to “Poisson”. See also the rpois() function for further details. 85

20. MeanX.gauss. This argument takes a numeric input, specifying the mean of the distribution of 86

the independent variable X, if DistributionX is set to “Gaussian”, “GaussianCategorical”, 87

“GaussianZero”, “GaussianZeroCategorical” or “AbsoluteGaussian”. See also the rnorm() function 88

for further details. See also the rnorm() function for further details. The operations of 89

categorization, taking the absolute value or adding zero-inflation are performed after the call to the 90

rnorm() function. 91

21. SDX.gauss. This argument takes a numeric input, specifying the standard deviation of the 92

distribution of the independent variable X, if DistributionX is set to “Gaussian”, 93

4

“GaussianCategorical”, “GaussianZero”, “GaussianZeroCategorical” or “AbsoluteGaussian”. See 94

also the rnorm() function for further details. See also the rnorm() function for further details. The 95

operations of categorization, taking the absolute value or adding zero-inflation are performed after 96

the call to the rnorm() function. 97

22. nCategoriesX.cat. This argument takes a numeric integer input, specifying how many 98

categories are simulated, if DistributionX is set to “GaussianCategorical” or “GammaCategorical”. 99

23. zeroLevelX.zero. This argument takes a numeric input, specifying the proportion of data that 100

will be set to 0, if DistributionX is set to “GaussianZero” or “GaussianZeroCategorical”. 101

24. ShapeX.gamma. This argument takes a numeric input, specifying the shape parameter k, if 102

DistributionX is set to “Gamma”, “GammaCategorical” or “NegativeBinomial”. See also the 103

rgamma() and rnbinom() functions for further details. Categorization is performed after the call to 104

the rgamma() function. 105

25. ScaleX.gamma. This argument takes a numeric input, specifying the scale parameter capital 106

theta, if DistributionX is set to “Gamma”, “GammaCategorical” or “NegativeBinomial”. See also 107

the rgamma() and rnbinom() functions for further details. Categorization is performed after the call 108

to the rgamma() function. 109

26. DFX.student. This argument takes a numeric input, specifying the degrees of freedom, if 110

DistributionX is set to “StudentsT”. See also the rt() function for further details. 111

27. MinX.uni. This argument takes a numeric input, specifying the minimum of the distribution, if 112

DistributionX is set to “Uniform”. See also the runif() function for further details. 113

28. MaxX.uni. This argument takes a numeric input, specifying the maximum of the distribution, if 114

DistributionX is set to “Uniform”. See also the runif() function for further details. 115

29. LambdaX.pois. This argument takes a numeric input, specifying the mean of the distribution, if 116

DistributionX is set to “Poisson”. See also the rpois() function for further details. 117

 118

The function TrustGaussTypeII() can be used for the analysis of type II error rates as described in the 119

main text. It adds a predefined effect to a single covariate only. All arguments can be accessed via 120

 121

> ?TrustGaussTypeII 122

 123

The function takes all the above 29 arguments of the TrustGauss() function and two additional ones. 124

 125

30. EffectXCov. This argument takes a numeric input, specifying the effect size that should be 126

simulated. 127

31. ZTransform. This argument is Boolean. If it is set to TRUE, the distributions of the dependent 128

variable Y and the independent variable X are Z-transformed prior to adding the effect specified via 129

EffectXCov. 130

 131

The function TrustGaussLMM() can be used to fit linear mixed-effects models and to assess type I 132

error rates. It takes the above 29 arguments of the TrustGauss() function. Furthermore, a single 133

random effect can be specified via 134

 135

32. RanEF. This argument is Boolean. If it is set to TRUE, a single random effect is fitted. 136

33. nRanEFLevels. This argument takes a numeric integer input, specifying how many repeated 137

measures for each sampling points are generated. 138

5

34. RanEFVarExp. This argument takes a numeric input, specifying the amount of variance 139

explained by the random effect. This amount is only correct if the variables are normally 140

distributed. 141

 142

The three functions in TrustGauss return a list with at least five elements 143

 144

1. A data frame Pvals with all P-values of covariates and factors. It has as many rows as simulation 145

runs (nSimulations) and as many columns as fitted covariates and factors. Each row represents the 146

P-values of a single iteration. Column names are of the form “PCov1”, “PCov2”, …, “PFac1”, 147

“PFac2”, … (depending on what combination of covariates and factors is specified). If 148

CompareTtest was set to TRUE, a two column data frame is returned with columns “PFac1” and 149

“PTtest”. The second column represents the P-values of a t-test. 150

2. A data frame ResCCC. It has as many rows as simulation runs (nSimulations) and six columns. 151

Each row represents the following estimates of a single iteration: Column “PSWY” contains all P-152

values of a Shapiro-Wilk test for normality of the dependent variable Y, column “PSWRes” 153

contains all P-values of a Shapiro-Wilk test for normality of the residuals, column “rho” contains 154

the concordance correlation coefficient (Lin 1989) between observed and expected residuals 155

assuming normality for each model. We use the qqnorm() function to generate the expected values. 156

Columns “s.shift”, “l.shift” and “C.b” contain the scale shift, the location shift and the bias 157

correction factor of the concordance correlation (Lin 1989). We use the CCC() function of the 158

DescTools R package (v0.99.25; Signorell & mult. al. 2018) for estimating these parameters. 159

3. A vector Alphas.05 that contains the type I error rate at an α-level of 0.05 for each of the fitted 160

covariates and factors summarized across all simulation runs. 161

4. A vector Alphas.001 that contains the type I error rate at an α-level of 0.001 for each of the 162

fitted covariates and factors summarized across all simulation runs. 163

5. A data frame ShapiroWilk, which is a summary of the data frame ResCCC with one row and 164

six columns. Column “Mean.PSWR” contains the mean P-value of the Shapiro-Wilk tests for 165

normality of the residuals, calculated as 166

 167

10mean(log10(ResCCC$PSWRes)) 168

 169

Columns “QL.PSWR” and “QU.PSWR” provide the lower and upper 95% quantiles of the P-170

values of the Shapiro-Wilk tests for normality of the residuals. Column “Mean.PSWY” contains 171

the mean P-value of the Shapiro-Wilk tests for normality of the dependent variable Y, calculated as 172

 173

10mean(log10(ResCCC$PSWY)) 174

 175

Columns “QL.PSWY” and “QU.PSWY” provide the lower and upper 95% quantiles of the P-176

values of the Shapiro-Wilk tests for normality of the dependent variable. 177

 178

6. If the argument SaveAllOutput is set to TRUE, a list Data that contains as many data frames as 179

there are dependent and independent variables fitted. The data frames are named “Dependent”, 180

“Cov1”, “Cov2”, … “Fac1”, “Fac2”, … (depending on what combination of covariates and factors 181

is specified). In each of these data frames the values of Y (Dependent) and X (all the other data 182

frames) are stored. Each of these data frames has as many rows as simulation runs (nSimulations) 183

and as many columns as the specified sample size (nSamples). Each row represents the data values 184

of a single iteration. 185

6

 186

The function TrustGaussTypeII() returns one more element 187

 188

7. A data frame Effects with the parameter estimates of the covariate with an added effect. It has as 189

many rows as simulation runs (nSimulations) and three columns. Each row represents the 190

parameter estimates of a single iteration. Column “Intercept” contains the estimate of the intercept, 191

column “Estimate” contains the slope estimate and column “SE” the standard error of the slope 192

estimate. 193

 194

The function TrustGaussLMM() returns the same list as the TrustGauss() function with one additional 195

element 196

 197

8. A vector VarExp that contains the proportion of variance explained by the single random effect 198

fitted in the mixed-effects model. Each element of the vector corresponds to a single iteration. 199

Thus, it has as many elements as simulation runs (nSimulations). 200

 201

Description of the data generating functions 202

All of the above three functions in the TrustGauss package generate data for the dependent variable Y 203

and the independent variable X through calls to the base R functions rnorm(), rgamma(), rbinom(), 204

rnbinom(), rt(), rpois(), runif() and sample(). These functions draw random values with specified 205

parameter arguments from a Gaussian, Gamma, binomial, negative binomial, Student’s t, Poisson, 206

uniform (floating numbers) or uniform (integers) distribution, respectively. The distributions 207

“GaussianCategorical”, “GaussianZero”, “GaussianZeroCategorical”, “AbsoluteGaussian” and 208

“GammaCategorical” make use of additional functions to generate categories, to take absolute values 209

or to introduce zero-inflation after a call to rnorm() or rgamma(), thereby changing the specified mean 210

and standard deviation or shape and scale. Table 1 lists the specific parameter settings for the ten 211

distributions simulated in the main text (D0–D9). Figures 1A and S2A display histograms of the 212

distributions D0–D9. 213

 214

A typical call to TrustGauss() 215

Assume we want to run a simulation with 100 observations in each of 50,000 iterations. We specify 216

the Family argument as “Gaussian” to fit a linear model with identity link. See the glm() 217

documentation for details on the Family arguments. This is equivalent to fitting a linear model 218

assuming normally distributed errors. Since we might also be interested in the individual observations 219

of each simulation run, we specify SaveAllOutput=TRUE. This will save the 100 × 50,000 = 220

5,000,000 data points of the dependent variable Y and the 5,000,000 observations of the predictor X. 221

We want the dependent variable Y to be distributed as the absolute values of a Gaussian distribution 222

with mean 0 and standard deviation 1. The independent variable X should be a single covariate that is 223

Gamma distributed with shape 1.5 and scale 10. Thus, our call to TrustGauss() looks like this 224

 225

> sim <- TrustGauss(Family="gaussian", nSamples=100, 226

nSimulations=50000, SaveAllOutput=TRUE, 227

DistributionY="AbsoluteGaussian", DistributionXCov="Gamma", 228

DistributionXFac=NULL, MeanY.gauss=0, SDY.gauss=1, 229

ShapeX.gamma=1.5, ScaleX.gamma=10) 230

 231

A progress bar is going to indicate the progress of the simulation, which is updated after every 232

iteration. As soon as the simulation has finished, we can access every element of the resulting list. For 233

7

example, if we want to obtain the data frame of individual P-values for every iteration in this call to 234

TrustGauss(), we can access it via 235

 236

> sim$Pval 237

 238

A summary of the type I error rate at an α-level of 0.05 is accessible through 239

 240

> sim$Alphas.05 241

 242

In this call to TrustGauss() with a single covariate, this will yield only a single value for the 243

independent variable X. If we had multiple covariates or factors specified, a separate type I error rate 244

for each of them would have been displayed. 245

 246

Description of the basic simulations 247

After specifying the input arguments for the TrustGauss()function (see above), the simulation starts 248

by generating uncorrelated data for the dependent variable Y and the independent variable X according 249

to the input parameters. Following our above example, specifying a sample size of nSamples = 100 250

and the distribution of Y as DistributionY = “AbsoluteGaussian” with MeanY.gauss = 0 and 251

SDY.gauss = 1, the function generates data for Y as 252

 253

> y <- abs(rnorm(n=100, mean=0, sd=1)) 254

 255

Similarly, for the independent variable X we specify DistributionX = “Gamma” with ShapeX.gamma 256

= 1.5 and ScaleX.gamma = 10. Then, the function generates data for X as 257

 258

> x <- rgamma(n=100, shape=1.5, scale=10) 259

 260

After the data generating step, two linear models are fitted using the Family argument (argument 1) 261

from above 262

 263

> mod1 <- glm(y ~ x, family=Family) 264

> mod2 <- glm(y ~ 1, family=Family) 265

 266

The models are compared via 267

 268

> anova(mod1, mod2) 269

 270

We keep the P-value of this model comparison and start the next iteration by generating data for Y 271

and X again. The number of iterations was set to nSimulations = 50,000 in all our simulations. We 272

further set Family = “gaussian”, with the exception of models with a Poisson error structure that are 273

highlighted as such in the main text. 274

 275

Because the data for Y and X are uncorrelated, we expect 5% of all models to yield a P-value ≤ 0.05. 276

If more than 5% of all models have a P-value ≤ 0.05, then the type I error rate is inflated (i.e. too 277

many models yield “significant” results), whereas if less models have a P-value ≤ 0.05, then they are 278

conservative, yielding too few “significant” results. In Figure 1, combinations of Y and X that produce 279

inflated type I error rates are coloured red and those yielding conservative P-values are coloured blue. 280

 281

8

Introduction of heteroscedasticity 282

First, we sampled the independent variable X from a binomial distribution, where we varied the 283

success rate from 0.2 to 0.8 in steps of 0.1. Whenever the independent variable X was equal to 0, we 284

sampled the dependent variable Y either from distribution D0 or D7 (see Table 1). We also introduced 285

a third distribution D7.1, which was negative binomial with mean 0.5 and a variance of 1 (with the 286

rational of introducing the same absolute difference in variance as in D0). Whenever the independent 287

variable X was equal to 1, we sampled the dependent variable from the same distribution but with a 288

10-times larger variance. We assessed the effects of heteroscedasticity with sample sizes of N = 100 289

and N = 1000. We then fitted a glm either with a Gaussian or a Quasipoisson error structure, where we 290

tested the significance of the independent variable X via a likelihood ratio test. We fitted these models 291

to 50,000 datasets for each combination of the dependent and predictor variable with two sample sizes 292

(i.e. 3 distribution of the dependent variable × 7 distributions of the independent variable × 2 sample 293

sizes = 42 combinations, each with a Gaussian or a Quasipoisson error structure). 294

 295

Second, we introduced a second independent variable X that we sampled from a uniform distribution 296

with five levels. The other predictor and the dependent variable Y were sampled as described above 297

with sample sizes of N = 100 and N = 1000. We then fitted a glm either with a Gaussian or a 298

Quasipoisson error structure, where we tested the significance of the interaction between the two 299

independent variables via a likelihood ratio test. We fitted these models to 50,000 datasets for each 300

combination of the dependent and predictor variables with two sample sizes as well. 301

 302

For each simulation run, we recorded the variance in the two groups (as defined by the predictor 303

variable with two levels, see above). We summarized the 50,000 simulation runs by calculating (1) 304

the type I error rate as the number of simulations with a P-value ≤ 0.05 / the number of all simulation 305

runs (i.e. 50,000) and (2) the mean observed difference in variances between the two groups (see 306

Table S5).307

9

Supplementary Figures 308

 309

Figure S1 | All simulated combinations of the dependent variable Y and the predictor X that were 310

fitted in linear regression models for sample sizes N = 10, 25, 50, 100, 250, 500, 1000. Figure names 311

are constructed as “X” <Distribution name of X> “_Y” <How many distributions of Y> 312

“Distributions_N” <Sample size> “_Sim” <Number of simulation runs>, such that the file 313

“XD0_Y10Distributions_N10_Sim50000” shows results from all 50,000 simulation runs where the 314

predictor X was normally distributed, the independent variable Y had ten different distributions (D0–315

D9) and the sample size was N = 10. In each of the 7 × 10 = 70 figures, the leftmost column depicts 316

the distribution of Y, the second column depicts the distribution of X, the third column a QQ-plot of 317

the residuals and the forth column a QQ-plot of the -log10(P-values). Residuals were distributed as the 318

dependent variable Y because the regression coefficient b was on average zero. 319

 320

Provided as supplementary figures (.jpg) on the Open Science Framework homepage.321

10

 322

 323

Figure S2 | Summary of linear model diagnostics for all 10 × 10 = 100 combinations of the dependent 324

variable Y and the predictor X depicted in (A). The numbers D0–D9 refer to the plots in in (B–E) 325

where on the Y-axis the distribution of the dependent variable and on the X-axis of the predictor is 326

indicated. (B) Type I error rate at an α-level of 0.05 for sample sizes of N = 10, 100 and 1000. Red 327

colours represent increased and blue conservative type I error rates. (C) Mean proportion of 328

studentized residuals (R) exceeding the critical value of R > 2 as a measure of discrepancy. A large 329

discrepancy value represents an observation whose dependent variable Y is unusual given its value of 330

the predictor X. It is thus influenced predominately by the distribution of Y. (D) Mean proportion of 331

hat values (H) exceeding the critical value of H > (2 × (k + 1)) / n as a measure of leverage. k is the 332

number of regression slopes and n is the number of observations. A large leverage value represents an 333

observation whose predictor X is unusual given its value of the independent variable Y. It is thus 334

influenced predominately by the distribution of X. (E) Mean proportion of Cook’s distance (D) 335

exceeding the critical value of D > 4 / (n - k - 1) as a measure of influence. Influence represents the 336

product of discrepancy and leverage (Zuur, Ieno & Smith 2007; Ramsey & Schafer 2013).337

11

Figure S3 | All simulated combinations of the dependent variable Y and the last of four predictors X 338

that were fitted in linear regression models. The first three predictors were normally distributed and 339

the distribution of the last one was varied. The sample size was N = 100. For a description of file 340

names and content see Figure S1. 341

 342

Provided as supplementary figures (.jpg) on the Open Science Framework homepage.343

12

Figure S4 | All simulated combinations of the dependent variable Y and the predictor X fitted in linear 344

random-intercept models. We simulated N = 100 independent samples each of which was sampled 345

twice, such that the single random effect explained roughly 30% of the variation in Y. For a 346

description of file names and content see Figure S1. 347

 348

Provided as supplementary figures (.jpg) on the Open Science Framework homepage.349

13

 350

 351

Figure S5 | Power, bias and precision of parameter estimates from Gaussian linear regression models 352

for all 10 × 10 = 100 combinations of the dependent variable Y and the predictor X at a regression 353

coefficient b = 0.15. (A) Overview of the different distributions that we simulated, which were the 354

same as in Figure 1. The numbers D0–D9 refer to the plots in (B–E) where on the Y-axis the 355

distribution of the dependent variable and on the X-axis of the predictor is indicated. (B) Power for 356

sample sizes of N = 10, 100 and 1000. Red colours represent increased power. (C) Deviation of power 357

from the expected value derived from a normally distributed Y and X for sample sizes of N = 10, 100 358

and 1000. Red colours represent increased and blue colours decreased power. (D) Bias and (E) 359

precision of the regression coefficient estimates for sample sizes of N = 10, 100 and 1000.360

14

 361

 362

Figure S6 | Power, bias and precision of parameter estimates from Gaussian linear regression models 363

for all 10 × 10 = 100 combinations of the dependent variable Y and the predictor X at a regression 364

coefficient b = 0.25. (A) Overview of the different distributions that we simulated, which were the 365

same as in Figure 1. The numbers D0–D9 refer to the plots in (B–E) where on the Y-axis the 366

distribution of the dependent variable and on the X-axis of the predictor is indicated. (B) Power for 367

sample sizes of N = 10, 100 and 1000. Red colours represent increased power. (C) Deviation of power 368

from the expected value derived from a normally distributed Y and X for sample sizes of N = 10, 100 369

and 1000. Red colours represent increased and blue colours decreased power. (D) Bias and (E) 370

precision of the regression coefficient estimates for sample sizes of N = 10, 100 and 1000.371

15

Figure S7 | All simulated combinations of the dependent variable Y and the predictor X fitted in 372

generalized linear models with a Poisson error structure. The sample size was N = 100. For a 373

description of file names and content see Figure S1. 374

 375

Provided as supplementary figures (.jpg) on the Open Science Framework homepage.376

16

Supplementary Tables 377

 378

Table S1 | Observed and expected power of a regression model in which both the dependent variable 379

Y and the predictor X are normally distributed with mean 0 and standard deviation 1. The expected 380

power was calculated using the power.SLR() function from the powerMediation R package (v0.2.9, 381

Dupont & Plummer 1998; Qiu 2018). The observed power was estimated using 50,000 simulations. 382

 383

Sample
size

Mean of
slope b

Expected power at
α = 0.05

Expected power at
α = 0.001

Observed power at
α = 0.05

Observed power at
α = 0.001

10 0.15 0.064 1.20 × 10-3 0.069 1.48 × 10-3

10 0.20 0.077 1.38 × 10-3 0.084 2.26 × 10-3

10 0.25 0.094 1.64 × 10-3 0.106 3.44 × 10-3

100 0.15 0.321 0.032 0.316 0.034

100 0.20 0.523 0.090 0.517 0.095

100 0.25 0.724 0.210 0.714 0.218

1000 0.15 0.998 0.933 0.998 0.932

1000 0.20 1.000 0.999 1.000 0.999

1000 0.25 1.000 1.000 1.000 1.000

17

Table S2 | Distributions and effect sizes used for assessing the interpretability and power of Gaussian 384

versus binomial and Poisson models at a sample size of N = 100 in 50,000 simulation runs. Each 385

combination of the dependent variable Y and predictor X was fitted in a glm using a Gaussian error 386

structure and the appropriate error structure according to the distribution of Y. The effect sizes were 387

chosen such that we reached a power of around 0.5. 388

 389

Sampling
distribution Y

Sampling
distribution X

Mean Y

Variance Y

Mean X

Variance X

Effect

Back-transformed
effect#

Poisson Gaussian 1 1 0 1 0.2 1.22

Poisson Gamma 1 1 10 100 2.2 9.03

Poisson Binomial 1 1 0.75 0.19 0.1 1.11

Binomial Gaussian 0.75 0.19 0 1 0.45 0.61

Binomial Gamma 0.75 0.19 10 100 4.2 0.99

Binomial Binomial 0.75 0.19 0.75 0.19 0.2 0.55

Back-transformation was done by using the functions plogis() for binomial models and exp() for Poisson models.390

18

Table S3 | Summary of type I error rates (α), scale shift parameters (υ), mean observed P-values at an expected value of 10-3 and 10-4 and the resulting bias 391

from 50,000 simulation runs across all 10 × 10 = 100 combinations of the dependent variable Y and the predictor X. 392

 393

Sample size Mean α (range) Mean υ (range) Mean P at 10-3 (range) Mean P at 10-4 (range) Bias at -log10P=3 Bias at -log10P=4

10 0.048 (0.015–0.110) 2.437 (0.696–51.350) 7.72 × 10-12 (2.59 × 10-125–7.00 × 10-3) 7.96 × 10-21 (6.31 × 10-129–1.05 × 10-3) 3.704 (0.718–41.529) 5.025 (0.744–32.050)

25 0.048 (0.019–0.073) 1.065 (0.771–2.461) 1.96 × 10-4 (2.20 × 10-16–7.93 × 10-3) 3.25 × 10-6 (6.81 × 10-27–1.57 × 10-3) 1.236 (0.700–5.219) 1.372 (0.701–6.542)

50 0.048 (0.028–0.067) 1.043 (0.837–2.229) 3.64 × 10-4 (5.36 × 10-13–6.47 × 10-3) 5.94 × 10-6 (3.55 × 10-23–1.27 × 10-3) 1.146 (0.730–4.090) 1.307 (0.724–5.612)

100 0.049 (0.037–0.058) 1.026 (0.892–1.937) 5.04 × 10-4 (8.22 × 10-11–4.55 × 10-3) 1.76 × 10-5 (7.14 × 10-19–1.45 × 10-3) 1.099 (0.781–3.362) 1.188 (0.710–4.537)

250 0.049 (0.041–0.053) 1.020 (0.941–1.631) 5.81 × 10-4 (2.49 × 10-9–3.00 × 10-3) 2.16 × 10-5 (2.14 × 10-15–3.31 × 10-4) 1.079 (0.841–2.868) 1.166 (0.870–3.667)

500 0.049 (0.045–0.052) 1.014 (0.958–1.534) 6.57 × 10-4 (9.12 × 10-9–2.02 × 10-3) 3.12 × 10-5 (1.87 × 10-16–7.07 × 10-4) 1.061 (0.898–2.680) 1.126 (0.788–3.932)

1000 0.049 (0.044–0.052) 1.010 (0.977–1.343) 7.51 × 10-4 (6.35 × 10-7–1.52 × 10-3) 3.94 × 10-5 (1.29 × 10-14–2.52 × 10-4) 1.042 (0.939–2.066) 1.101 (0.899–3.473)

19

Table S4 | Summary of type I error rates (α), scale shift parameters (υ), mean observed P-values at an expected value of 10-3 and 10-4 and the resulting bias 394

from 50,000 simulation runs across all 10 × 2 = 20 combinations where either the dependent variable Y or the predictor X was normally distributed. 395

 396

Normally
distributed variable

Sample
size

Mean α (range)

Mean υ (range)

Mean P at 10-3 (range)

Mean P at 10-4 (range)

Bias at -log10P=3

Bias at -log10P=4

Y 10 0.050 (0.048–0.052) 1.005 (0.997–1.015) 8.82 × 10-4 (6.64 × 10-4–1.03 × 10-3) 8.43 × 10-5 (4.01 × 10-5–1.55 × 10-4) 1.018 (0.996–1.059) 1.019 (0.952–1.099)

Y 25 0.050 (0.049–0.052) 1.004 (0.990–1.015) 9.90 × 10-4 (7.92 × 10-4–1.22 × 10-3) 6.25 × 10-5 (3.19 × 10-5–1.17 × 10-4) 1.002 (0.971–1.034) 1.051 (0.983–1.124)

Y 50 0.050 (0.049–0.051) 0.999 (0.992–1.015) 1.02 × 10-3 (8.06 × 10-4–1.32 × 10-3) 9.14 × 10-5 (4.79 × 10-5–1.55 × 10-4) 0.997 (0.960–1.031) 1.010 (0.952–1.080)

Y 100 0.050 (0.048–0.051) 1.000 (0.993–1.005) 1.02 × 10-3 (8.90 × 10-4–1.25 × 10-3) 8.22 × 10-5 (5.90 × 10-5–1.32 × 10-4) 0.998 (0.968–1.017) 1.021 (0.970–1.057)

Y 250 0.050 (0.048–0.051) 1.001 (0.990–1.014) 9.66 × 10-4 (7.49 × 10-4–1.22 × 10-3) 8.29 × 10-5 (3.77 × 10-5–1.61 × 10-4) 1.005 (0.972–1.042) 1.020 (0.949–1.106)

Y 500 0.049 (0.047–0.051) 0.998 (0.984–1.003) 9.95 × 10-4 (7.62 × 10-4–1.28 × 10-3) 8.39 × 10-5 (4.20 × 10-5–1.79 × 10-4) 1.001 (0.965–1.039) 1.019 (0.937–1.094)

Y 1000 0.050 (0.049–0.052) 0.999 (0.989–1.017) 1.06 × 10-3 (8.99 × 10-4–1.36 × 10-3) 8.47 × 10-5 (5.86 × 10-5–1.44 × 10-4) 0.992 (0.956–1.015) 1.018 (0.960–1.058)

X 10 0.050 (0.048–0.052) 1.003 (0.996–1.014) 9.28 × 10-4 (7.59 × 10-4–1.24 × 10-3) 9.76 × 10-5 (5.62 × 10-5–1.46 × 10-4) 1.011 (0.968–1.040) 1.003 (0.959–1.063)

X 25 0.050 (0.049–0.051) 0.999 (0.988–1.010) 1.11 × 10-3 (8.45 × 10-4–1.42 × 10-3) 9.73 × 10-5 (5.31 × 10-5–1.69 × 10-4) 0.986 (0.949–1.024) 1.003 (0.943–1.069)

X 50 0.049 (0.048–0.052) 0.998 (0.988–1.017) 1.01 × 10-3 (7.53 × 10-4–1.27 × 10-3) 1.35 × 10-4 (7.49 × 10-5–2.03 × 10-4) 0.998 (0.965–1.041) 0.968 (0.923–1.031)

X 100 0.050 (0.048–0.051) 1.001 (0.996–1.005) 9.98 × 10-4 (8.04 × 10-4–1.20 × 10-3) 7.64 × 10-5 (2.39 × 10-5–1.81 × 10-4) 1.000 (0.973–1.032) 1.029 (0.936–1.155)

X 250 0.050 (0.049–0.052) 1.004 (0.995–1.016) 9.69 × 10-4 (7.49 × 10-4–1.25 × 10-3) 6.74 × 10-5 (2.72 × 10-5–1.46 × 10-4) 1.005 (0.968–1.042) 1.043 (0.959–1.141)

X 500 0.050 (0.049–0.052) 1.000 (0.989–1.014) 9.67 × 10-4 (7.99 × 10-4–1.16 × 10-3) 1.15 × 10-4 (5.19 × 10-5–1.84 × 10-4) 1.005 (0.979–1.033) 0.985 (0.934–1.071)

X 1000 0.050 (0.049–0.052) 1.000 (0.992–1.012) 1.02 × 10-3 (7.48 × 10-4–1.30 × 10-3) 6.92 × 10-5 (1.91 × 10-5–1.38 × 10-4) 0.997 (0.962–1.042) 1.040 (0.965–1.180)

20

Table S5 | Summary of the heteroscedasticity simulations. We estimated type I error rates (α) in glms 397

with a Gaussian or Quasipoisson error structure and the mean observed difference in variances 398

between the two groups as defined by the predictor variable with two levels (see Supplementary 399

Methods for details, expected value is 10). 400

 401

Model

Sampling
distribution Y

P(X1=1)

Sample size

Gaussian α

Quasipoisson α

Observed difference
in variances

Y ~ X1 D0 0.2 100 1.18 × 10-3 - 11.21

Y ~ X1 D0 0.3 100 7.70 × 10-3 - 10.75

Y ~ X1 D0 0.4 100 0.024 - 10.53

Y ~ X1 D0 0.5 100 0.054 - 10.41

Y ~ X1 D0 0.6 100 0.101 - 10.35

Y ~ X1 D0 0.7 100 0.168 - 10.31

Y ~ X1 D0 0.8 100 0.262 - 10.24

Y ~ X1 D7 0.2 100 0.037 0.024 14.46

Y ~ X1 D7 0.3 100 0.063 0.047 12.78

Y ~ X1 D7 0.4 100 0.096 0.080 11.97

Y ~ X1 D7 0.5 100 0.130 0.121 11.73

Y ~ X1 D7 0.6 100 0.176 0.180 11.37

Y ~ X1 D7 0.7 100 0.237 0.256 11.17

Y ~ X1 D7 0.8 100 0.319 0.356 10.95

Y ~ X1 D7.1 0.2 100 0.110 0.079 19.21

Y ~ X1 D7.1 0.3 100 0.145 0.119 15.86

Y ~ X1 D7.1 0.4 100 0.177 0.158 14.39

Y ~ X1 D7.1 0.5 100 0.201 0.199 13.66

Y ~ X1 D7.1 0.6 100 0.219 0.244 13.12

Y ~ X1 D7.1 0.7 100 0.207 0.283 13.42

Y ~ X1 D7.1 0.8 100 0.154 0.298 15.00

Y ~ X1 D0 0.2 1000 5.4 × 10-4 - 10.10

Y ~ X1 D0 0.3 1000 6.68 × 10-3 - 10.07

Y ~ X1 D0 0.4 1000 0.022 - 10.05

Y ~ X1 D0 0.5 1000 0.050 - 10.04

Y ~ X1 D0 0.6 1000 0.097 - 10.03

Y ~ X1 D0 0.7 1000 0.166 - 10.03

Y ~ X1 D0 0.8 1000 0.250 - 10.02

Y ~ X1 D7 0.2 1000 4.34 × 10-3 2.80 × 10-3 10.39

Y ~ X1 D7 0.3 1000 0.015 0.012 10.25

Y ~ X1 D7 0.4 1000 0.031 0.028 10.20

Y ~ X1 D7 0.5 1000 0.062 0.059 10.15

21

Y ~ X1 D7 0.6 1000 0.109 0.108 10.13

Y ~ X1 D7 0.7 1000 0.174 0.176 10.09

Y ~ X1 D7 0.8 1000 0.265 0.270 10.11

Y ~ X1 D7.1 0.2 1000 0.015 8.56 × 10-3 10.74

Y ~ X1 D7.1 0.3 1000 0.030 0.021 10.49

Y ~ X1 D7.1 0.4 1000 0.056 0.046 10.38

Y ~ X1 D7.1 0.5 1000 0.089 0.081 10.24

Y ~ X1 D7.1 0.6 1000 0.132 0.131 10.19

Y ~ X1 D7.1 0.7 1000 0.197 0.203 10.17

Y ~ X1 D7.1 0.8 1000 0.288 0.299 10.21

Y ~ X1 * X2 D0 0.2 100 1.2 × 10-4 - 11.23

Y ~ X1 * X2 D0 0.3 100 2.42 × 10-3 - 10.76

Y ~ X1 * X2 D0 0.4 100 0.017 - 10.58

Y ~ X1 * X2 D0 0.5 100 0.064 - 10.47

Y ~ X1 * X2 D0 0.6 100 0.169 - 10.34

Y ~ X1 * X2 D0 0.7 100 0.340 - 10.29

Y ~ X1 * X2 D0 0.8 100 0.559 - 10.27

Y ~ X1 * X2 D7 0.2 100 4.26 × 10-3 9.20 × 10-3 14.52

Y ~ X1 * X2 D7 0.3 100 7.40 × 10-3 0.036 12.83

Y ~ X1 * X2 D7 0.4 100 0.019 0.097 12.09

Y ~ X1 * X2 D7 0.5 100 0.047 0.206 11.58

Y ~ X1 * X2 D7 0.6 100 0.108 0.353 11.26

Y ~ X1 * X2 D7 0.7 100 0.209 0.492 11.07

Y ~ X1 * X2 D7 0.8 100 0.321 0.557 11.09

Y ~ X1 * X2 D7.1 0.2 100 0.049 0.084 20.10

Y ~ X1 * X2 D7.1 0.3 100 0.042 0.147 15.97

Y ~ X1 * X2 D7.1 0.4 100 0.036 0.217 14.06

Y ~ X1 * X2 D7.1 0.5 100 0.044 0.293 13.57

Y ~ X1 * X2 D7.1 0.6 100 0.080 0.357 13.20

Y ~ X1 * X2 D7.1 0.7 100 0.150 0.381 13.50

Y ~ X1 * X2 D7.1 0.8 100 0.251 0.368 15.17

Y ~ X1 * X2 D0 0.2 1000 2 × 10-5 - 10.11

Y ~ X1 * X2 D0 0.3 1000 1.00 × 10-3 - 10.07

Y ~ X1 * X2 D0 0.4 1000 0.011 - 10.05

Y ~ X1 * X2 D0 0.5 1000 0.051 - 10.04

Y ~ X1 * X2 D0 0.6 1000 0.146 - 10.03

Y ~ X1 * X2 D0 0.7 1000 0.306 - 10.02

Y ~ X1 * X2 D0 0.8 1000 0.526 - 10.04

22

Y ~ X1 * X2 D7 0.2 1000 4 × 10-5 1.4 × 10-4 10.42

Y ~ X1 * X2 D7 0.3 1000 1.24 × 10-3 3.24 × 10-3 10.25

Y ~ X1 * X2 D7 0.4 1000 9.82 × 10-3 0.020 10.21

Y ~ X1 * X2 D7 0.5 1000 0.046 0.077 10.16

Y ~ X1 * X2 D7 0.6 1000 0.136 0.195 10.13

Y ~ X1 * X2 D7 0.7 1000 0.297 0.379 10.09

Y ~ X1 * X2 D7 0.8 1000 0.509 0.596 10.06

Y ~ X1 * X2 D7.1 0.2 1000 1.4 × 10-4 1.12 × 10-3 10.71

Y ~ X1 * X2 D7.1 0.3 1000 1.26 × 10-3 0.010 10.49

Y ~ X1 * X2 D7.1 0.4 1000 8.78 × 10-3 0.046 10.34

Y ~ X1 * X2 D7.1 0.5 1000 0.037 0.128 10.34

Y ~ X1 * X2 D7.1 0.6 1000 0.115 0.278 10.24

Y ~ X1 * X2 D7.1 0.7 1000 0.259 0.482 10.25

Y ~ X1 * X2 D7.1 0.8 1000 0.449 0.684 10.19

23

References 402

Dupont, W.D. & Plummer, W.D. (1998) Power and sample size calculations for studies involving 403

linear regression. Controlled Clinical Trials, 19, 589–601. 404

Komsta, L. & Novomestky, F. (2015) moments: Moments, cumulants, skewness, kurtosis and related 405

tests. 406

Lin, L.I. (1989) A concordance correlation-coefficient to evaluate reproducibility. Biometrics, 45, 407

255–268. 408

Qiu, W. (2018) powerMediation: Power/Sample Size Calculation for Mediation Analysis. 409

Ramsey, F. & Schafer, D.W. (2013) The statistical sleuth: a course in methods of data analysis, 3 410

edn. Brooks/Cole. 411

Signorell, A. & mult. al. (2018) DescTools: Tools for descriptive statistics. 412

Zuur, A.K., Ieno, E.N. & Smith, G.M. (2007) Analysing ecological data. Springer Science + Business 413

Media, LLC. 414

